Course Specification	ons
Programme (s) on which the course is gi	iven : P., P.&las.,
P.&G., P.&Ch.	
Major or Minor element of programme	es : major -major –
minor- minor.	
Department offering the programme	: P., P.,
P.&G., P.&Ch.	
Department offering the course	Physics
Academic year / Level	1
Date of specification approval:	2012
A Desia Information	

A-Basic Information

Title:		Code: P122
	Thermodynamics	
Credit Hours:	3 h	Lecture: 3h
Tutorial: 00		Total: 3h
	Practicals:00	

B- Professional Information

1 – Overall Aims of Course

at the end of this course the student would be able to understand the thermodynamic relations, laws and entropy

- 2 Intended Learning Outcomes of Course (ILOs)
- a-Knowledge and Understanding:

student would be able to a1- have the knowledge to the main thermodynamic systems and process

a2- understanding the thermodynamic

concepts and relations

a3- understand the transfer of heat to work

b -Intellectual Skills

student should be able to

b1- Apply the thermodynamic treatment for different processes

b2 deal with the different thermodynamic

processes in heat engine, refrigerators and power plant

b3- be implicated with simple

thermodynamic analysis of some processes c- Professional and Practical Skills

student would be able to

c1- develop the experimental skills which are related to this field

c2- solve simple thermodynamic problems

d- General and Transferable Skills

The student should be able to

d1- apply the thermodynamic principles with other people

d2- Improve his knowledge about studying the statistical thermodynamics

3- Contents

Торіс	No. of hours	Lectu re	Tutor ial/Pr actica l
Definitions and concepts	6	2	
First law and applications	6	2	
Carnot's cycle and theorem	6	2	
Heat engine and refrigerator	3	1	
Second law and examples	6	2	
entropy	6	2	
Third law and application	3	1	

4– Teaching and Learning Methods 4.1-lectures 4.2 -disscutions

5- Student Assessment Methods

5.1 sheat exams ... to assess the theoretical knowledge
5.2 disscutions to assess student scientific thinking
5.3 reaserch projects to assess the overall outcome
Assessment Schedule

Assessment	sheet exam	Week 8&16
1		(mid &final
		term).
Assessment	Practical	Week 8&16
2	exams	(mid &final
		term).
Assessment	oral exams	every week
3		
Assessment		Final Week
4	reaserchprojects	

Weighting of Assessments

Mid-Term Examination	20
%	
Final-term Examination	
60 %	
Oral Examination.	
20 %	
Total	100
º⁄o	

6- List of References

6.1- Course Notes

6.2- Essential Books (Text Books)

a first course in thermodynamics; M. M. OBERI ,etal 1974 6.3- Recommended Books thermodynamics, kinetic theory and statistical thermodynamics Francis W. Sears, etal 1977 heat and thermodynamics M.W. Zemansky 1984 6.4- Periodicals, Web Sites, ... etc 7- Facilities Required for Teaching and Learning Data show – computer – books – internet,....etc.

Course Coordinator: Prof.Dr.Ibrahem Zaki Hager Head of Department: Prof.Dr. Sana Maize Date: / /